

P a g e 1 | 7

Security in SDLC – Secure Software Development Lifecycle –

SSDLC

Authors: Theodor Adam, Florin Andrei, Larisa Gabudeanu, Victor Rotaru

Copy Editor: Alexandru Mircea Rotaru

The Software Development Lifecycle (SDLC) is a framework developed to design, build,

test and deploy high quality software that meets or exceeds customer expectation and reaches

completion within estimated time and budget.

The SDLC framework includes the following steps:

5.
Testing&Integration

2. Analysis

4. Development

7. Maintenance

6. Deployment 3. Design

1.
Define Requirements

SDLC

Figure 1: The SDLC Framework

P a g e 2 | 7

1. Define Requirements – The requirements definition phase shapes the major

functions and features of the intended application or system. It should be considered the

following:

a. Business requirements;

b. Operational requirements;

c. Security requirements;

d. Architecture requirements;

The validation of the collected and defined requirements with the stakeholders of the

intended application or system is very important.

2. Analysis – The requirements analysis will produce the specification for the

intended application or system. Using the specification and the defined requirements it will be

easy to shape the acceptance criteria you will use to assess the completeness of the application

or system before deployment. This is the phase where the feasibility study is done.

3. Design – The requirements and specification from the previous phase will help

in this stage for the creation of the conceptual design of the intended application or system.

The workflows together with the detailed software architecture are created during this phase

and the applied standards are defined.

4. Development – This is the phase where the design documentation developed in

the previous phase is converted into an application or system that should meet the requirements

and specification.

5. Testing & Integration - the testing team (or the quality assurance team) uses

different frameworks to execute unit tests, functionality testing, system integration testing,

interoperability testing as well as user acceptance testing in order to ensure that the code is

clean (bug free) and the requirements are met.

6. Deployment – the tested application or system is moved to production. This

phase includes the work necessary to deploy the final solution into the target production

environment. Also, you need to create some documentation like: creating guides for

installation, system operations, system administration, and end-user functionality. For complex

software projects, you need to create a detailed plan for implementing the application or the

system across the organization.

7. Maintenance – this is the final stage of the software development lifecycle and

includes maintenance and regular updates. Through maintenance, the deployed application or

system is fine-tuned according to the user’s feedback about its performance. Also, periodically,

the application or system is enhanced and upgraded in order to comply with the end user needs.

As it was defined, SDLC is a framework focused on software delivery, but can be

enriched with best practices in order to improve the quality of its results. Secure SDLC

P a g e 3 | 7

(SSDLC) is a collection of best practices enriching SDLC framework to make secure the

software developed through SDLC.

Next, we will pass through SDLC presented above and add to it the common best

practices used to make SDLC secure, or to transform SDLC in SSDLC.

One of the most important steps for both SDLC and SSDLC is the Requirements

Definition phase. In order to shape properly the security requirements, you need to perform a

risk assessment and use it as reference, to define these security requirements. Moreover, it is

very important to identify any security considerations for business requirements, operations

requirements and architecture requirements. There are some security aspects you should

consider, regardless the size of your project:

- Access control. Identification and Authentication;

- Data security. Security of data in transit (communications protection). Security of

data at rest (information protection and integrity);

- Media protection;

- Physical protection;

- System protection and integrity;

A good guideline for all these security aspects is NIST 800-171 Protecting Controlled

Unclassified Information in Nonfederal Systems and Organizations,

https://csrc.nist.gov/publications/detail/sp/800-171/rev-2/final.

Other very important aspects you should consider from the Requirement Definition phase

are the legal and regulatory constraints. For example laws like GDPR, Sarbanes-Oxley and

HIPAA put constraints on data collection, processing and dissemination. This may affect how

you will design your security for your application or system. Therefore, for each of your

requirements topic you develop, you should define a dedicated topic of security constraints that

apply and present them in the Security Requirements.

The Analysis phase it is also a validation step for the collected requirements and

constraints during the Requirements Definition phase. If the feasibility study you perform

during this phase reveals some compliance or regulatory issues because of a poor security

requirements collection, the project should return to the Requirements Definition phase. The

specification developed at this phase should embed security specification and the acceptance

criteria you design should address all security requirements collected during Requirement

Definition phase.

During the Design phase, you need to perform a Risk Analysis, or a Threat Modelling

and at the end to review the design in order to ensure that all the security requirements and

specifications are enough to protect against the threats identified in the studied threat or risk

https://csrc.nist.gov/publications/detail/sp/800-171/rev-2/final

P a g e 4 | 7

models. The solution architecture should embed all security requirements and specification.

The overall technical solution should assure end-to-end security specification as defined.

At this phase, a Security Testing Plan should be developed based on the threats identified

during Threat Modelling or Risk Analysis exercise.

For the Development phase the goal is to make sure that the written code is clean and

well written. Your organization should adhere to rigid coding standards. If code runs or plays

a part in gathering information for mission-critical applications, it is too important to leave it

to chance and should be controlled by coding standards that are constantly kept up-to date.

Obtaining the right standards and keeping them current with the latest best practices should be

a top priority for organizations with a software development team.

For the Testing and Integration phase a security test plan should be defined prior

starting the Testing and Integration phase. The security test plan can be derived directly from

the results of threat modelling. Unit testing and Integration testing are the main testing tasks

performed in this phase, but are not enough to ensure the security of the developed application

or system.

A code review is required in order to ensure that there is no issue with the intended

application or system and that coding standards are respected and applied correctly. Ensuring

continuous code quality, both in the development and maintenance phases, reduces

considerably the costs and risks of security and reliability issues in software as well. The code

review can be either manual or automated using technologies such as static application security

testing (SAST). These open-source components are usually checked using Software

Composition Analysis (SCA) tools.

The key objectives of the code review are:

- The design goals are being met;

- The security objective are being met;

- The implementation is robust;

- The coding standards are respected and applied correctly;

Keep in mind that software is developed by humans, and humans make mistakes. The

later the issues are discovered in the SDLC, the more difficult they are to correct and the more

work that may need to be redone as a result. Static code analysis tools are not capable of

detecting every potential vulnerability within an application because some vulnerabilities are

only apparent at runtime, and static code analysis tools do not execute the code that they are

examining. For the runtime vulnerabilities, penetration testing will reveal them and this should

be done before moving the application or system to production.

P a g e 5 | 7

The Deployment phase should start with a strong security testing before moving the

application or system to production. A reliable security testing phase should contain not only

vulnerability assessment or penetration testing scenarios, but also a testing phase of the incident

response, especially if the application or system you are planning to test is mission-critical.

Platform security cannot be ignored, for while the application itself might be secure, the

platform it operates on might have exploitable flaws. Therefore, platforms need to be made

secure by taking appropriate measures like turning off unwanted services, running the machines

on the least privilege principle, and making sure there are security safeguards such as IDS, and

firewalls.

The overall security testing of the entire system should be performed in order to ensure

that the developed application or system together with the platform it operates are secured and

can allow users to use it. Penetration testing will identify the vulnerabilities and will allow the

implementation team to fix them in order to ensure a secure configuration within production

environment.

Keep in mind that once an application or system is deployed in production, security

vulnerabilities become exponentially costlier to fix. Regardless of the sophistication of the

software and thorough testing there will always be glitches and bugs.

There are also on-going tasks during the Maintenance phase because security is an on-

going process and updates, patches and enhancements to the application code are constantly

required. It is a cycle that repeats itself, but security, even at the time of these modifications,

must always be in focus. Performing penetration testing after implementing important updates

for the application or supporting platform should be part of your Operational Assurance

process.

Keep in mind that at the end of its lifecycle, a software or a platform must be disposed

properly in order to maintain the same level of security for your operational environment.

Sometimes, the disposal might be performed through a dedicated project where all aspects are

considered in order to minimize the risks.

P a g e 6 | 7

Conclusion

5.
Testing&Integration

2. Analysis

4. Development

7. Maintenance

6. Deployment 3. Design

1.
Define Requirements

Secure
SDLC

1. Risk Assessment
2. Security Constraints

1. Feasibility Study and
Requirements Validation

1. Risk Assessment
2. Security Constraints

1. Applying Coding
Standards

1. Code Review
2. Unit Testing,
Integration testing

1. Platform Security
2. Penetration Testing

1. Continuous monitoring
2. Penetration Testing

Figure 2: The SSDLC Framework

Above, the Figure 2 presents SDLC with the main best practices needed to make it Secure

SDLC or SSDLC.

The continuously evolving threats demand organizations to improve their security

posture and therefore, a framework like SDLC must be enriched with the best practices required

to make it become SSDLC and deliver secure software.

As presented in this article, secure development lifecycle or secure SDLC helps

developers and organizations plan, create, deploy and maintain secure software because

security becomes part of the software development process in each of its stages and controls

that the definition, analysis, design, development, testing, deployment and maintenance phases

deliver secure results.

P a g e 7 | 7

Mature implementations of SDLC already had in place the best practices to make it

secure before being defined as Secure SDLC because in time, it became a necessity to embed

security best practices in their Software Development Lifecycle and they understood that

security must be everywhere. It should begin at project inception and be on the mind of every

engineer during requirements analysis, design, coding, testing and deployment. This is the only

way that security can be reliably improved in every application or system you build to deliver

secure software and solutions.

